

Mathematics in Education and Industry

Over 50 years at the forefront of Mathematics Education

Teaching Statistics in the new A level using graphing technology

Cath Moore cath.moore@mei.org.uk

Overarching themes and use of technology

Paragraph 8 of the Content Document states that – 8. The use of technology, in particular mathematical and statistical graphing tools and spreadsheets, must permeate the study of AS and A level mathematics.

Calculators used must include the following features:

- An iterative function
- The ability to compute summary statistics and access probabilities from standard statistical distributions

CALCULATOR HINTS FOR STATISTICS

- STAT MENU (2) on Casio CG10/20

It is advised that mean and standard deviation are obtained directly from a calculator.

1. Numerical measures

(a) Mean and standard deviation, without frequencies

F2 (CALC)

	Rad Norm1 d/c Real						
	List 1	List 2	List 3	List 4			
SUB							
1	1						
2	2						
3	3						
4	4						
1-VAR 2-VAR REG SET							

Mathematics in Education and Industry

1 Var X List: List 1 F1 1 Var Freq: 1

EXIT

F1 (1 VAR)

CASIO_®

List 1: input *x* 1 2 3 4 5


```
1:Select Type
2:Editor
3:1-Variable Calc
4:Statistics Calc
```


Mathematics in Education and Industry

Rad Norm1 d/c Real

List 2 List 3

List 4

Frequencies given

List 1: input *x* 1 2 3 4 5

List 2: input frequencies 2 5 8 4 2

For grouped data, the mid values should be

entered into List 1. This can be done by entering, for example,

(34.5 + 39.5)/2 directly into List 1.

F2 (CALC)

F6 SET

1 Var X List : List 1

1 Var Freq : List 2

EXIT

F1 (1 VAR)

FREQUENCY TABLES

If the data comes from a frequency table, ClassWiz can be set up to input the data values in one column, and the frequencies in another.

1:Input/Output

2:Angle Unit

3:Number Format

4:Engineer Symbol

To access the set-up menu, press SHFT MENU (SET UP).

1:Fraction Result

2:Complex

3:Statistics

4:Spreadsheet

Press the down arrow () to reach the second page and 3 to select the Statistics settings.

Frequency?

1:0n

2:0ff

Press 1 to turn the Frequency option On.

List 1: input *x* 1 2 3 4

List 2: input frequencies 2 5 8 4 2

(b) Mean and standard deviation with frequencies

A six-sided die was thrown a large number of times and the scores recorded as follows.

Score, x	Frequency, f
1	31
2	17
3	21
4	24
5	17
6	25

- Find the mode.
- 2. Find the mean.
- 3. What is the median score?

Calculators must be used to find probabilities.

2. Binomial Distribution

eg X~B(15, 0.2) P(X = 3)

F5 DIST

Data Variable

x 3 EXE

Numtrial 15 EXE

0.2

EXF

Rad Norm1 d/c Real Binomial P.D p=0.25013889

eg X~B(15, 0.2)

$$P(X = 3)$$

0.2501388953

(b) Probabilities of type $P(X \le x)$:

eg $X \sim B(15, 0.2)$ $P(X \le 3)$

Upper 3 EXE
Numtrial 15 EXE
p 0.2 EXE
Execute F1 (calc)



Mathematics in Education and Industry

Use down

(b) Probabilities of type $P(X \le x)$:

eg B(15, 0.2) P($X \le 3$)

1:List 2:Variable Press 2 Variable Binomial CD 3 Press = x :3 N :15 p :0.2 15 Press = 0.2 Press = Press =

P= 0

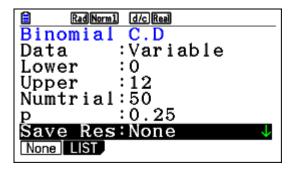
0.6481621047

A hotel has 50 single rooms, 16 of which are on the ground floor. The hotel offers guests a choice of a full English breakfast, a continental breakfast or no breakfast. The probabilities of these choices being made are 0.45, 0.25 and 0.30 respectively. It may be assumed that the choice of breakfast is independent from guest to guest.

(a) On a particular morning there are 16 guests, each occupying a single room on the ground floor. Calculate the probability that exactly 5 of these guests require a full English breakfast.

- (b) On a particular morning when there are 50 guests, each occupying a single room, determine the probability that:
- (i) at most 12 of these guests require a continental breakfast;
- (ii) More than 10 but fewer than 20 of these guests require no breakfast.

(a) On a particular morning there are 16 guests, each occupying a single room on the ground floor. Calculate the probability that exactly 5 of these guests require a full English breakfast.


(3 marks)

- (b) On a particular morning when there are 50 guests, each occupying a single room, determine the probability that:
 - (i) at most 12 of these guests require a continental breakfast;

(2 marks)

(ii) more than 10 but fewer than 20 of these guests require no breakfast. (3 marks)

It is advised that students should be aware of the method involved as questions may involve being asked to show a result.

3. Discrete Probability Distributions: Expectation and variance

List 1: input x

List 2: input probabilities 0.1 0.3 0.4

List 1 | List 2 | List 3 List 4 SUB 0.3 0.4

IGRAPHJ CALC J TEST J INTR J DIST JI

Rad Norm1 d/c Real

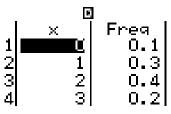
CALC F2

SET **EXIT**

$$\overline{X} = E(X) \sum x = E(X) \sum x^2 = E(X^2) \sigma given$$

Check n = 1

List 1: input x


List 2: input probabilities 0.1 0.3 0.4

Press

Press OPTN 1:Select Type 2:Editor 3:1-Variable Calc 4:Statistics Calc

Example

For the following probability distribution,

 \boldsymbol{x}

0

1

2

3

4

5

P(X = x)

0.08

0.30

0.34

0.15

0.10

0.03

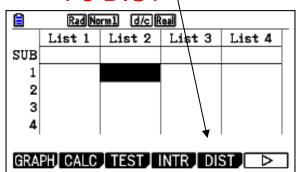
calculate

- (a) E(X)
- (b) $E(X^2)$
- (c) the variance of X
- (d) the standard deviation of X

	Rad Norm1 d/c Real					
	List 1	List 2	List 3	List 4		
SUB						
1	0	0.08				
2	1	0.3				
3	2	0.34				
4	3	0.15				
1-VAR 2-VAR REG SET						

- (a) E(X) = 1.98
- (b) $E(X^2) = 5.36$
- (c) $Var = 5.36 1.98^2 = 1.44$
- (d) sd = 1.20

It is advised that z values and methods are shown and the calculator is used for checking results.


4. Normal Distribution: Calculation of probabilities

(a) Probabilities of types $P(X \le x)$, P(X < x), P(X > x) and $P(X \ge x)$ can be found directly

eg $X \sim N(135,15^2)$

 $P(X \le 127)$ or P(X < 127)

F5 DIST

F2 Ncd

Select a suitable Lower value


```
Rad Norm1 d/c Real
Norma1 C.D
p =0.29690142
z:Low=-9
z:Up =-0.5333333
```


eg X~ N(135,15²)

 $P(X \le 127)$ or P(X < 127)

Normal CD Lower:0 Upper:127 σ :15 Normal CD Upper:127 σ:15 μ:135

Enter data then =

P= 0

0.2969014278

eg $X \sim N(135, 15^2)$

$P(X \ge 118)$ or P(X > 118)

Select a suitable Upper value

```
RadNorm1 d/cReal
Normal C.D
Data :Variable
Lower :118
Upper :200
σ :15
μ :135
Save Res:None
```

```
RadNorm1 d/cReal
Normal C.D
p =0.8714555
z:Low=-1.1333333
z:Up =4.33333333
```

eg $X \sim N(135, 15^2)$

P(119 < *X* < 128)

eg X~ N(135,15²)

Normal CD

Lower:118

Upper:200

:15

$P(X \ge 118)$ or P(X > 118)

Press 7 1:Normal PD

2:Normal CD 3:Inverse Normal

4:Binomial PD

_____ Press 2

Normal CD Upper:200 σ :15 μ :135

Enter data then =

0.8714555072

eg $X \sim N(135,15^2) P(119 < X < 128)$

Normal CD Lower:119 Upper:128 o :15 Normal CD Upper:128 o:15 P=

Ε,

0.1773079985

(b) Problems involving inverse normal probabilities:

eg $X \sim N(135, 15^2)$ Find value of x such that P(X < x) = 0.15 F5 DIST F1 NORM

Area Left

z scores corresponding to area can also be obtained (InvNormal tables)

eg *X*~ N(135,15²)

Find value of x such that P(X < x) = 0.15

1:Normal PD
2:Normal CD
3:Inverse Normal
4:Binomial PD

Inverse Normal Enter Area :0.15 data

of :15 then =

xInv =

119.4535129

Note: area is always

to the left

eg $X \sim N(135, 15^2)$ Find value of x such that P(X > x) = 0.30

Area right this time

Inverse Normal

Area :0.70

σ :15 :135 x In v =

142.8660066

Area to left is 0.70

About MEI

- Registered charity committed to improving mathematics education
- Independent UK curriculum development body
- We offer continuing professional development courses, provide specialist tuition for students and work with industry to enhance mathematical skills in the workplace
- We also pioneer the development of innovative teaching and learning resources