

(1)

(6)

(3)

Questions for AEA Section 1 – Constructing a **Concise Argument**

2006

- **June** 1. (a) For |y| < 1, write down the binomial series expansion of $(1 y)^{-2}$ in ascending powers of y up to and including the term in y^3 .
 - (b) Hence, or otherwise, show that

$$1 + \frac{2x}{1+x} + \frac{3x^2}{(1+x)^2} + \ldots + \frac{rx^{r-1}}{(1+x)^{r-1}} + \ldots$$

can be written in the form $(a + x)^n$. Write down the values of the integers a and n. **(4)**

(c) Find the set of values of x for which the series in part (b) is convergent.

July 2005

1. A point *P* lies on the curve with equation

$$x^2 + y^2 - 6x + 8y = 24.$$

Find the greatest and least possible values of the length *OP*, where *O* is the origin.

June 2003

6. (*a*) Show that

$$\sqrt{2+\sqrt{3}} - \sqrt{2-\sqrt{3}} = \sqrt{2} .$$
 (3)

(b) Hence prove that

$$\log_{\frac{1}{8}}\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right) = -\frac{1}{6}.$$

(c) Find all possible pairs of integers a and n such that

$$\log_{\frac{1}{n}} \left(\sqrt{a + \sqrt{15}} - \sqrt{a - \sqrt{15}} \right) = -\frac{1}{2}.$$
(13)