
Mathematical Problem Solving AS/A Level example

Solution to example 9

These two quadratic curves have a common tangent at x = 2.

Given that one curve has a vertex at (0,2) and the other has a vertex at (3,5), find the equation of each curve and the equation of the common tangent.

The equation of the parabola with the vertex at (0,2) can be written $y = ax^2 + 2$ The equation of the parabola with the vertex at (3,5) can be written $y = -b(x - 3)^2 + 5$ At x = 2 the curves have the same y coordinate so $a \cdot 2^2 + 2 = -b(2 - 3)^2 + 5$ So $4a + 2 = -b + 5 \iff 4a + b = 3$ (A)

For $y = ax^2 + 2$, $\frac{dy}{dx} = 2ax$

For
$$y = -b(x-3)^2 + 5$$
, $\frac{dy}{dx} = -2b(x-3)$

At x = 2 the curves have the same gradient so $2a \cdot 2 = -2b(2-3)$

So $4a = 2b \iff 2a = b$ (B)

(B) in (A)
$$6a = 3 \iff a = \frac{1}{2}$$

In (B) b = 1

The parabolas are $y = \frac{1}{2}x^2 + 2$ and $y = -(x - 3)^2 + 5$

The gradient at x = 2 for each parabola is 2

When x = 2, $y = \frac{1}{2} \cdot 2^2 + 2 = 4$ for each parabola

The equation of the common tangent is y - 4 = 2(x - 2) which simplifies to y = 2x

