Find a continuous function for each domain-range combination.

Range	$x \in \mathbb{R}$	$x \in \mathbb{R}, x>0$	$x \in \mathbb{R}, x \geq 0$
$y \in \mathbb{R}$			
$y \in \mathbb{R}, y>0$		$\mathrm{f}(x)=\frac{1}{\sqrt{x}}$	
$y \in \mathbb{R}, y \geq 0$	$\mathrm{f}(x)=x^{2}$		

When the domain is given as $\{x \in \mathbb{R} ; x>0\}$, for the purposes of this activity this means that it isn't possible to enter 0 or any negative number; it does not mean that you can choose to restrict the domain in this way. Similarly a range of $\{y \in \mathbb{R} ; y \geq 0\}$ means that every nonnegative number is attainable. Piecewise functions such as $\mathrm{f}(x)=\left\{\begin{array}{ll}1 & x=0 \\ \frac{1}{x} & x>0\end{array}\right.$ are not allowed!

