Three challenge questions

1. The diagram shows three congruent squares. Find the sum of the two angles marked.

2. The spiral below starts at the point $(-1,0)$ and the perpendicular edges are drawn in an anticlockwise spiral with a common ratio r as shown.

Due to similarity, after an even number of steps the leading point will be on the diagonal line shown. If this diagonal makes an angle θ with the first edge as shown, find the coordinates of the point on which the spiral is converging.
3. Investigate the approximation $\tan x^{\circ} \approx \frac{10+x}{100-x}$.

Equation 1: $y=\tan x$
Equation 2: $y=(10+x) /(100-x)$

Hints and solutions

1. This can be done using the compound angle formulae for $\tan (\alpha+\beta)$ but it is more satisfying to prove this using the diagram below. How?

2. The spiral homes in on the point (X, Y) where (using $r=\tan \theta$)
$X=(-1)+2-2 r^{2}+2 r^{4}-\ldots=-1+\frac{2}{1+r^{2}}=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta}=\cos 2 \theta$
and $Y=2 r-2 r^{3}+2 r^{5}-2 r^{7}+\ldots=\frac{2 r}{1+r^{2}}=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta+\sin ^{2} \theta}=\sin 2 \theta$

Therefore the spiral converges on the point $(\cos 2 \theta, \sin 2 \theta)$. Think how this links in with the circle theorems.

3. For small values of x, in radians, $\tan x \approx x$ and so $\tan x^{\circ} \approx \frac{\pi x^{\circ}}{180^{\circ}}$ for sufficiently small x.

$$
\begin{aligned}
\tan x^{\circ}=\tan \left(\left(x^{\circ}-45^{\circ}\right)+45^{\circ}\right) & =\frac{\tan \left(x^{\circ}-45^{\circ}\right)+\tan 45^{\circ}}{1-\tan \left(x^{\circ}-45^{\circ}\right) \tan 45^{\circ}} \approx \frac{\frac{\pi}{180^{\circ}}\left(x^{\circ}-45^{\circ}\right)+1}{1-\frac{\pi}{180^{\circ}}\left(x^{\circ}-45^{\circ}\right)} \\
& =\frac{\pi(x-45)+180}{180-\pi(x-45)}=\frac{x+\left(\frac{180}{\pi}-45\right)}{\left(\frac{180}{\pi}+45\right)-x} \approx \frac{x+10}{100-x}
\end{aligned}
$$

