Choosing a good example
Hypothetical learning trajectory
Using formula for area of triangle

\[A = \frac{(b \times h)}{2} \]

What examples should students see in order to really learn about the use of this formula?
Using formula for area of triangle
Here are the properties Craig and I have worked on.

Typical or routine examples

Variation examples

Non-routine examples

Non-example
Here are the properties Craig and I have worked on.

Typical or routine examples allow the learner to become familiar with key features.

Variation examples highlight a key feature.

Non-routine examples deepen insight and prevent an over-reliance on superficial aspects.

Non-example (looks relevant but isn’t). The absence of key features makes that feature explicit.

What do you think?
Two schools of thought

Chinese

European
Two schools of thought: Chinese

“In contrast with “contextualization problems”, variation problems in the interest of facilitating connection concepts and methods play important roles in the eastern curriculum.”

Xuhua Su (Year) *The structures, goals and pedagogies of “variation problems” in the topic of addition and subtraction of 0 – 9 in Chinese textbooks and reference books*

Mun Yee Lai (Year) *Teaching with Procedural Variation: A Chinese Way of Promoting Deep Understanding of Mathematics*
Two schools of thought: Chinese

Xuhua Su (Year) *The structures, goals and pedagogies of “variation problems” in the topic of addition and subtraction of 0 – 9 in Chinese textbooks and reference books*
“Our conclusions...are that control of dimensions of variation and ranges of change is a powerful design strategy for producing exercises that encourage learners to engage with mathematical structure, to generalize and to conceptualize even when doing apparently mundane questions”

Two schools of thought: The West

“Our conclusions...are that control of dimensions of variation and ranges of change is a powerful design strategy for producing exercises that encourage learners to engage with mathematical structure, to generalize and to conceptualize even when doing apparently mundane questions”

Two schools of thought: The West

<table>
<thead>
<tr>
<th>Simplify these:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6/10</td>
<td>18/20</td>
<td>6/8</td>
<td>14/16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Now simplify these:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15/25</td>
<td>45/50</td>
<td>15/20</td>
<td>35/40</td>
<td></td>
</tr>
</tbody>
</table>

Compare the answers

Over to you

Addition of fractions
Expanding quadratics
Finding the length of the opposite of a right angle triangle.
Examples of mastery at KS3?

“Angles on parallel lines”

- How many hours?
- Headline objectives for each lesson?
Examples of mastery at KS3?

“Angles on parallel lines”

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min</td>
<td>Assess prior knowledge of angles.</td>
</tr>
<tr>
<td>10 min</td>
<td>Give terms, diagrams, facts etc. of allied, alternate and corresponding angles.</td>
</tr>
<tr>
<td>20 min</td>
<td>Practice of finding missing angles (easy).</td>
</tr>
<tr>
<td></td>
<td>Lots of practice of finding missing angle problems (complex) using combinations of facts.</td>
</tr>
</tbody>
</table>
Deconstructing Teacher-Centeredness and Student-Centeredness Dichotomy: A Case Study of a Shanghai Mathematics Lesson
Rongjin Huang Frederick K. S. Leung (2005)
Corresponding angles

- same side of the transversal line *and*
- the corresponding side of the other lines
Corresponding angles
Where are another pair of corresponding angles?
Corresponding angles
Where are a pair of corresponding angles in each diagram?
Corresponding angles
Add line b and identify the angle 5 on lines b and t that corresponds with angle 4.
Corresponding angles
Add line b and identify the angle 5 on lines b and t that corresponds with angle 4.

Draw line b so that angles 4 and 5 are equal.
Corresponding angles
State a pair of corresponding angles?
Corresponding angles
Where are a pair of corresponding angles in each diagram?
Corresponding angles
Sketch a diagram where angles 1 and 2 are corresponding but not equal and angles 2 and 3 are vertically opposite.

Now construct a diagram where angles 1 and 2 are corresponding and equal and 2 and 3 are vertically opposite.
Looking at textbook page, which questions can we answer?

Mastery of parallel lines
Mastery of parallel lines

What do you think?