

Sponsored by

CASIO

@MEIConference

#MEIConf2018

Further Pure with Technology

Tom Button
tom.button@mei.org.uk
@mathstechnology

mei.org.uk/fpt

FPT

Further Pure with Technology is an MEI A level Further Maths minor option with three topics:

- Investigation of curves (graphing/CAS)
- Differential Equations (graphing/CAS/spreadsheet)
- Number Theory (programming language)

More details:

mei.org.uk/fpt

Sample assessment

Conjecturing and proving

- There is a strong emphasis on students conjecturing based on the output of their software.
- They are then expected to be able to prove these results.

Plot the curves with equations:

$$x = a\cos t + 3\cos\frac{2t}{3}$$
$$y = a\sin t - 3\sin\frac{2t}{3}$$

where $0 \le t < 6\pi$ for the cases a = 2, a = 3 and a = 4.

State any features:

- common to all these curves;
- unique to one of these cases.

Features of curves

$$x = a\cos t + 3\cos\frac{2t}{3}$$
$$y = a\sin t - 3\sin\frac{2t}{3}$$

where $0 \le t < 6\pi$ for the cases a = 2, a = 3 and a = 4.

- Important points: intersections with the axes and stationary points.
- Any symmetry.
- Whether the curve is bounded.
- Any asymptotes.
- Cusps or loops.

Computer Algebra System (CAS)

- A CAS can perform basic algebraic techniques automatically, such as:
 - solving;
 - factorising/expanding;
 - differentiating/integrating;
 - finding limits.
- This allows the focus to be on selecting techniques and interpreting the output.

Plot the tangent field for the differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - 2xy}{x^2}$$
$$(x > 0, y > 0)$$

For what region of the plane will the particular solution through (x_1, y_1) be a decreasing function?

Differential equations in GeoGebra

- Slopefield(f)
- SolveODE(f,A)
- In CAS: SolveODE(y'=f)

Try these for
$$\frac{dy}{dx} = \frac{1 - 2xy}{x^2}$$

Performing lots of calculations

- Technology can perform a large number of calculations quickly and accurately.
- This allows for systematic searches.

Write a program to determine whether a positive integer n can be written as the sum of the squares of two integers a and b: $n = a^2 + b^2$.

Use your program to investigate which odd positive integers can be written as the sum of the squares of two integers.

Using Python for number theory

Python can be downloaded from: www.python.org/

Online editor at: repl.it/languages/python3

Investigation of curves

- Plotting families of curves (cartesian, polar or parametric) and investigating properties (using CAS).
- Working with chords, tangents and normals to curves.
- Using limits to determine asymptotes and cusps.
- Finding arc lengths on curves.
- Finding envelopes of families of curves.

Differential Equations

- Plotting and interpreting tangent fields for differential equations.
- Solving differential equations analytically (using CAS) and working with families of particular solutions.
- Solving differential equations numerically using the Euler and Runge-Kutta methods (using a spreadsheet).

Number theory

- Writing programs to search for solutions to number theory problems (using Python).
- Use unique prime factorisation.
- Modular arithmetic (including Fermat's Little Theorem, Euler's totient function, Euler's theorem and Wilson's theorem).
- Diophantine equations (including Pythagoras' theorem and Pell's equations).

Assessment

- A timed written paper that assumes that students have access to the technology.
- For the examination each candidate needs access to a computer with appropriate software and no communication ability.

Offering FPT

FPT can be offered:

- As one of three minor options (preferably in year 13)
- As an additional minor option with the best scores counting
- Extension course (not certificated) for non-MEI centres

Resources:

- Textbook (June 2018)
- Integral resources (summer 2018)
- OCR practice papers (via <u>OCR interchange</u>)
- Old FPT resources (past papers and Integral)
- Possible live online course (2018/19)

About MEI

- Registered charity committed to improving mathematics education
- Independent UK curriculum development body
- We offer continuing professional development courses, provide specialist tuition for students and work with employers to enhance mathematical skills in the workplace
- We also pioneer the development of innovative teaching and learning resources