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Section A (36 marks)

1 (i) Show that the equation

  1
x  = 3 – x2   (*)

  has a root, a, between x =1 and x = 2.

  Show that the iteration

  xr+1 = 1
3 – x 2r

 ,

  with x0 = 1.5, converges, but not to a. [5]

 (ii) By rearranging (*), find another iteration that does converge to a. You should demonstrate the 
convergence by carrying out several steps of the iteration. [3] 

2 A function f(x) has the values shown in the table.

x 2.8 3 3.2

f(x) 0.9508 0.9854 0.9996

 (i) Taking the values of f(x) to be exact, use the forward difference method and the central difference 
method to find two estimates of f′(3). State which of these you would expect to be more accurate.
 [5]

 (ii) Now suppose that the values of f(x) have been rounded to the four significant figures shown. Find, 
for each method used in part (i), the largest possible value it gives for the estimate of f′(3). [2]

3 (i) X is an approximation to the number x such that X = x (1 + r). State what r represents.

  Show that, provided r is small, X n ≈ x n (1 + nr). [4]

 (ii) The number G = 0.577 is an approximation to the number g. G is about 0.04% smaller than g. 
State, in similar terms, relationships between

  (A) G2 and g2,

  (B) G and g . [3]

4 The expression, sin x + tan x, where x is in radians, can be approximated by 2x for values of x close to 
zero.

 (i) Find the absolute and relative errors in this approximation when x = 0.2 and x = 0.1. [4]

 (ii) A better approximation is sin x + tan x ≈ 2 x + x
3

k , where k is an integer.

  Use your results from part (i) to estimate k. [3]
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5 A quadratic function, f(x), is to be determined from the values shown in the table.

x 1 3 6

f(x) –10 –12 30

 Explain why Newton’s forward difference formula would not be useful in this case.

 Use Lagrange’s interpolation formula to find f(x) in the form ax2 + bx + c. [7]

Section B (36 marks)

6 The integral

   I = 1.8

1
x3 1+  dx

 is to be estimated numerically. You are given that, correct to 6 decimal places, the mid-point rule 
estimate with h = 0.8 is 1.547 953 and that the trapezium rule estimate with h = 0.8 is 1.611 209.

 (i) Find the mid-point rule and trapezium rule estimates with h = 0.4 and h = 0.2.

  Hence find three Simpson’s rule estimates of I. [7]

 (ii) Write down, with a reason, the value of I to the accuracy that appears to be justified. [2]

 (iii) Taking your answer in part (ii) to be exact, show in a table the errors in the mid-point rule and 
trapezium rule estimates of I.

  Explain what these errors show about 

  (A) the relative accuracy of the mid-point rule and the trapezium rule,

  (B) the rates of convergence of the mid-point rule and the trapezium rule. [8]

7 (i) Show that the equation

  x5 – 8x + 5 = 0   (*)

  has a root in the interval (0, 1).

  Find this root, using the Newton-Raphson method, correct to 6 significant figures.

  Show, by considering the differences between successive iterates, that the convergence of the 
Newton-Raphson iteration is faster than first order. [11]

 (ii) You are now given that equation (*) has a root in the interval (1.4, 1.5). Find this root, correct to 3 
significant figures, using the secant method. Determine whether or not the secant method is faster 
than first order. [8]
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1 

1(i) x LHS  RHS     
 1 1 < 2 (Change of sign implies root.)  
 2 0.5 > -1  (or equivalent)  [M1A1]

         
 r 0 1 2 3 4 5 6  

 xr 1.5 1.333333 0.818182 0.429078 0.355127 0.347961 0.347352 [M1A1]
  State or clearly imply convergence outside the interval (1, 2)  [E1]
      

(ii) E.g. xr+1 = √(3 - 1/x) E.g. xr+1 = 3/x - 1/x2 [B1]
 r 0 1 2 3 0 1 2 3

 xr 1.5 1.527525 1.531452 1.532 1.5 1.555556 1.515306 1.544287
    4 5 4 5 [M1A1]
        1.532077 1.532087   1.523326 1.538438 [TOTAL 8] 

          
2(i) Forward difference: (0.9996 - 0.9854)/0.2 = 0.071    [M1A1]
 Central difference: (0.9996 - 0.9508)/0.4 = 0.122   [M1A1]
 Central difference expected to be more accurate.   [E1]
        
(ii) Forward difference maximum: (0.99965 - 0.98535)/0.2 = 0.0715 [B1]
 Central difference maximum: (0.99965 - 0.95075)/0.4 = 0.12225  [B1]
                  [TOTAL 7]
         
3(i) r is the relative error (in X as an approximation to x)    [E1]

 Xn = xn (1 + r)n (1 + r)n = 1 + nr (provided r is small)  [M1M1A1]
       

(ii) G2 (= 0.332 929, not required) is about 0.08% smaller than g2   
 √G (= 0.795 605, not required) is about 0.02% smaller than √g   [M1A1A1]
         
                  [TOTAL 7]
         
4(i) x sin + tan 2x error rel error accept: +ve, +ve  
 0.2 0.401379 0.4 -0.00138 -0.00344  -ve, +ve  [M1A1A1A1]
 0.1 0.200168 0.2 -0.00017 -0.00084  -ve, -ve  
        

(ii) 2 × 0.23 / k = 0.00138 gives k = 11.59 Either of these (or other methods) [M1A1]

 2 × 0.13 / k = 0.00017 gives k = 11.76 to suggest k = 12   [B1]
                  [TOTAL 7]
         
5 Data not equally spaced in x   [E1]
       
 f(x) = - 10(x - 3)(x - 6) / (1 - 3)(1 - 6) - 12(x - 1)(x - 6) / (3 - 1)(3 - 6) + 30(x - 1)(x - 3) / (6 - 1)(6 - 3) 
       [M1A1A1A1]

 f(x) = - (x2 - 9x +18) + 2(x2 - 7x + 6) + 2(x2 - 4x + 3)   [A1]

      = 3x2 - 13x      [A1]
                  [TOTAL 7]
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6(i) h M T S   

 0.8 1.547953 1.611209 1.569038    M: [M1A1A1]
 0.4 1.563639 1.579581 1.568953    T: [M1A1]
 0.2 1.567619 1.571610 1.568949    S: [M1A1]
      [subtotal 7]
(ii) 1.56895 appears justified Comparison of last two S values, e.g.:  [B1]
 last change in S is -0.000004; next change negligible   [E1]
        [subtotal 2]
(iii) h M error T error     
 0.8 -0.02100 0.04226  accept consistent  
 0.4 -0.00531 0.01063  use of other sign  
 0.2 -0.00133 0.00266  convention   [M1A1A1] 
         
 (A) M errors are about half the T errors so M is twice as accurate as T [E1A1]
 (B) Errors for both T and M reduce by a factor of 4 as h is halved so [E1]
  the rates of convergence are the same, both second order  [A1A1]
       [subtotal 8]
                  [TOTAL 17]
          
7(i) f(0) = 5, f(1) = -2. (Change of sign implies root.)    [M1A1]
         

 f '(x) = 5x4 - 8   hence N-R formula     [M1A1]
          
 r 0 1 2 3 4    

 xr 0.5 0.634146 0.638232 0.638238 0.638238   [M1A1A1]
 differences  0.134146 0.004086 5.98E-06 1.29E-11   [A1]
 ratios   0.030457 0.001462 2.17E-06   [M1A1]
 The ratios of differences are decreasing (fast) so process is faster than first order [E1]

 
  

  
  

 
[subtotal 

11]
       

(ii) r 0 1 2 3 4   

 xr 1.4 1.5 1.458054 1.462741 1.46312   

 f(xr) 
-0.82176 0.59375 -0.0747 -0.00559 5.99E-05   [M1A1A1]

  root is 1.46 correct to 3 sf     [A1]
          
  differences 0.1 -0.04195 0.004687 0.000379   [A1]
  ratios  -0.41946 -0.11175 0.080876   [M1A1]
 The ratios of differences are decreasing (fast) so process is faster than first order [E1]
      accept 'second order' [subtotal 8]
                  [TOTAL 19]
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